
113 Class Problems: Irreducible Elements and Unique

Factorization Domains

1. Is the polynomial 2x2 − 4 irreducible in C[x]? How about in R[x], Q[x] or Z[x]?
Solutions:

2. If a polynomial f(x) ∈ Q[x] has no roots in Q must it be irreducible in Q[x]?

Solutions:
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3. Consider the subring Z[
√
−5] ⊂ C

(a) Prove that Z[
√
−5] = {a+ b

√
−5|a, b ∈ Z}

(b) If a + b
√
−5 ∈ Z[

√
−5] is non-zero, what is the minimum possible value of |a +

b
√
−5|2, the square of the absolute value?

(c) Using part (b) determine Z[
√
−5]∗, the units in Z[

√
−5].

(d) Prove that 2, 3, 1 +
√
−5, 1−

√
−5 are non-associated elements of Z[

√
−5].

(e) Prove that 2, 3, 1 +
√
−5, 1−

√
−5 are irreducible elements of Z[

√
−5].

(f) Prove that Z[
√
−5] is not a UFD.

Solutions:
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